One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin.

نویسندگان

  • E C Young
  • H K Mahtani
  • J Gelles
چکیده

A single molecule of the "two-headed" motor enzyme kinesin can move along a microtubule continuously for many enzymatic turnovers (processive movement), and the velocity produced by one kinesin molecule is the same as that produced by many kinesin molecules (high duty ratio). We studied the microtubule movement driven at 1 mM ATP by biotinated N-terminal fragments of Drosophila kinesin heavy chain attached to streptavidin-coated coverslips at various surface densities. K448-BIO has velocity at a high density of vmax = 750 nm s-1 and is dimeric (hence two-headed); K365-BIO (vmax = 200 nm s-1) and K340-BIO (vmax = 90 nm s-1) are monomeric. Escape of microtubules from the surface was prevented by methylcellulose so that continuous trajectories of microtubules not continuously attached to motor molecules could be recorded by video microscopy. The component of instantaneous velocity parallel to the microtubule axis (v) was analyzed in trajectories with a mean velocity 0.4-0.7 times vmax. In K448-BIO trajectories, the distribution of v was bimodal with peaks near 0 and 750 nm s-1. Temporal autocorrelation analysis of v detected lengthy episodes of high-velocity movement consistent with isolated processive microtubule runs driven at vmax by single K448-BIO dimers. K365-BIO and K340-BIO trajectories had unimodal distributions of v and autocorrelation times much shorter than those for K448-BIO. Therefore the monomeric motors have duty ratio < 55% (i.e., no forward movement is generated for at least 45% of the enzymatic cycle time) or processivity below the detection limit of approximately 300 turnovers even in methylcellulose. Continuous movement at maximal velocity thus requires more than one kinesin head.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processivity of the Motor Protein Kinesin Requires Two Heads

A single kinesin molecule can move for hundreds of steps along a microtubule without dissociating. One hypothesis to account for this processive movement is that the binding of kinesin's two heads is coordinated so that at least one head is always bound to the microtubule. To test this hypothesis, the motility of a full-length single-headed kinesin heterodimer was examined in the in vitro micro...

متن کامل

Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains.

Kinesin is a processive motor protein: A single molecule can walk continuously along a microtubule for several micrometers, taking hundreds of 8-nm steps without dissociating. To elucidate the biochemical and structural basis for processivity, we have engineered a heterodimeric one-headed kinesin and compared its biochemical properties to those of the wild-type two-headed molecule. Our construc...

متن کامل

Kinetic and mechanistic basis of the nonprocessive Kinesin-3 motor NcKin3.

Kinesin-3 motors have been shown to transport cellular cargo along microtubules and to function according to mechanisms that differ from the conventional hand-over-hand mechanism. To find out whether the mechanisms described for Kif1A and CeUnc104 cover the full spectrum of Kinesin-3 motors, we characterize here NcKin3, a novel member of the Kinesin-3 family that localizes to mitochondria of as...

متن کامل

Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization.

Unc104/KIF1A belongs to a class of monomeric kinesin motors that have been thought to possess an unusual motility mechanism. Unlike the unidirectional motion driven by the coordinated actions of the two heads in conventional kinesins, single-headed KIF1A was reported to undergo biased diffusional motion along microtubules. Here, we show that Unc104/KIF1A can dimerize and move unidirectionally a...

متن کامل

Structure-based Molecular Simulations Reveal the Enhancement of Biased Brownian Motions in Single-headed Kinesin

Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT) using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through "walking" in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 10  شماره 

صفحات  -

تاریخ انتشار 1998